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SOUND RADIATION BY A PLATE REINFORCED BY A SET OF PROJECTING STIFFENER RIBS 
SUBJECTED TO A PERIODIC SYSTEM OF FORCES* 

B.P. BELINSKII 

There is considered sound radiation by a plate reinforced by a periodic set of pro- 
jecting stiffener ribs of small wave dimensions. The source of the field is a set 
of lumped harmonic forces applied to the plate periodically in each transit, where 
the forces are taken identical in amplitude but with a constant phase shift between 
adjacent sources. The problem reduces to a quasiregular infinite system of linear 
algebraic equations, in terms of whose solution the energy fluxes leaving the plate 
into the fluid are expressed. 

Sound radiation by periodically reinforced plates has been studied in many papers (see 

/l/, etc.). A common simplification was not taking account of sound reflection from the rib 
surfaces, in other words, considering them to influence only the conditions at which oscil- 
lations of the carrying plate occur. 

This paper continues the investigation /2,3/ on the influence of the stiffener rib re- 
flecting surface on the diffraction field. However, the method developed there permits com- 
putation of the radiation of the construction under consideration only forasufficientlysmall 
ratio between the rib height and the spacing between them. A more realistic case, when this 
ratio is on the order of one, is investigated below. The factorization method /4/ is used 
in a form analogous to the constructions in /5/, where short wave diffraction is considered 
by a plate reinforced by one rib. Amplitudes of the waves being propagated over the ribs and 
their energy fluxes are found. The dependence of the fluxes on the frequency and point of 
application of the force is studied. The limits of applicability of an approximate examina- 
tion of diffraction processes without taking account of sound reflection from theribsurfaces 
are discussed. 

1. Let a plate (- 00 <~(a, , y =O}be reinforced by projecting stiffener ribs {x = 

nd, 0 < y < h}(-00 < n < 00). The structure is excited by a set of point forces 

l(4=Q_~P -x0 - nd)exp(ina) 
(1.1) 

applied to the plate (0(x,(d). The phase shift a can be considered to vary between the 
limits (a I< x. The problem is planar, the time dependence of the processes exp(--iat)(o is 
the frequency of oscillation) is omitted. The pressure p(x, y) (y> 0) in the fluid satisfies 
the Helmholtz equation for the boundary conditions on the plate and the rib surfaces /2,3/ 

Lp (x, 0) = [ ($ - w) -$ + v] P (xv 0) = vf (4 -I- 
co 

z EJ (5 - nd) + CJ’ (I - nd) (- M <x < -3) 
-ce 

(1.2) 

px(nd, Y)+YP,.(~~,O)=O (O-cy-eh--oon<oo) (1.3) 

The boundary contact constants B,, C, are determined from the conditions of rib juncture 
with the plate 

-GP, (4 0) = bmrxlm(nd. 0)l 

--~ap~~(ad,O)=[p,,,(nd, 0)1+ v~sI~(nd, e)lds 

(1.4) 

n 
These conditions, as well as the meaning of the parameters k,, v,Z,,Z, are discussed in 

/2,3/. The symbol [cp(nd)] denotes a jump in the function m(x) as it passes through the point 
x = nd. Finally, the pressure field p(s,y) is constructed in conformity with the principle 
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of limit absorption /6,7/ and should satisfy the Meixner condition "on the rib" /8/. 

2. In conformity with the almost periodicity of the system of forces (1.1) applied to 
the plate, we shall seek the pressure field in the form of an almost-periodic function, i.e., 
we assume that 

p (s + ma, Y) = P (2, y) exp (ima) (2.1) 

To give a foundation to the scheme for application of the limit absorption principle, it 
should be established that the boundary value problem for the Helmholtz equation has a unique 
solution under the conditions (1.2)- (1.4) and (2.1) in the presence of absorptioninthemedium 
(Im k > 0). It is here considered that the field p(x, y) satisfies the Meixner condition and 
decreases sufficiently rapidly at infinity, to assure convergence of the integrals occurring 
below. We note that uniqueness of the solution is proved rigorously in /9/ for problems of 
electromagnetic wave diffraction by arrays, 

Let us use the second Green's formula for the pair of functions p(x, y) and p(x,y) (the 
bar is the symbol of the complex conjugate, and po is the fluid density) in the domain Q(S 
is the boundary of the domain 9) 

~S(PAP-PA~)~R=~S(~~-~~)~~ 
Q s 

(2.2) 

S={O<x<d, y=O}U{O<x<d, y=N} 

u {x=+0, O<Y<fqU {x=d-0, O<y<H) 

Taking account of the Helmholtz equation, there follows from the identity (2.2) 

-~~~PI~d~=&Inl~~pdS 
II 

n 5 (2.3) 

The left side here yields the energy absorbed in the domain Q, and the right side the energy 
flux through the boundary ,$ /7/. Integration by parts with the whole set of boundary and 
boundary-contact conditions and the Meixner condition, as well as the substantiality of para- 
meters k,, v,Z,,Z, are real, taken into account is executed in transformation of the right 
side. We just present the result 

(2.4) 

We assume that as H+m the field p (x, II) +O together with pp(x, H), where L,, the 
norm in the left side of (2.4), remains finite. We find 

-$$ km 
-+m 

1 I p ladQ = & Im (Ppv (zO, 0)) 
cl 

(2.5) 

Under the coniditions of the homogeneous problem F=O, from which p(x, y)=O, whichindeed 
proves the uniqueness of the solution. 

In the absence of absorption, we arrive at the identity 
d 

7& Im S A (x9 RI D (x, H) dx = & Im ( FP, (x0, 0)) 
II 

(2.6) 

Here the right side describes the energy inserted into the structure, while the leftside 
is the energy flux through the contour {O<s<d, Y. =H}. Because of the almost-periOdiCity 
condition (2.1) in the space above the ribs (y>h)r the pressure field is representable in 
the form of the Fourier series 

.erP(&s - YnY) 
-I) 

h ,,- d, Y,,=vA,,B-kP, Rey,>O _ 2nn+a 

(2.7) 

Taking also account of the adhesion condition for the plate displacement c(x) = prl(x, 
O)/(Pcm*) /l/I we reduce the identity (2.6) to the form 

(2.8) 
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Summation here is just over the waves being propagated, for which (h, 1 <k. The identity 
(2.8) is the energy conservation law and can be used to check the correctness of computations 
of the structure radiation. It agrees with the identity found in /9/ for the case of plane 
electramagnetic waves diffraction by arrays. The right side of (2.8) is hence a quantity that 
can be measured directly on a plate. 

Under the conditions of the homogeneous problem, the identity (2.8) shows that the ampli- 
tudes of all the waves being propagated above the ribs are zero (with the possible exception 
of the "slipping wave" for which I2nn + a ( = kd). However, it is impossible to assert this 
with respect to the waves not being propagated, and therefore, a solution of the type of waves 
traveling along the structure and decreasing exponentially with distance away generally appears 
at certain frequencies in the homogeneous problem. In the absence of ribs, such a wave is a 
surface wave /l/ at those frequencies at which its wave number x satisfies the condition 
I 2m + a I = xd with some integer m, We still note that non-uniqueness of the solution is 
reduced by inserting absorption in the structure material even for Imk -0. 

3. In the zero-th approximation, when sound diffraction by the stiffener rib surface is 
not taken into account, the pressure field is found by elementary means in the form of a 
series of the type (2.7) (the lack of limits to the summation below means that it is executed 
over all integer n) 

pa(z,y)=-~~~texP(ih,z-~y.r/)(exP(--th,z,) + 

fl + ihnfa), L,, = (h:: - ko4) y,, - v 

f1= -&j[U1(0) U1(- 50) - (us (0) + $) uo (- zo)) 

fr = &&L(O’ Uo(- z3) - (cro(O) -+) ul(-za)} 

A (a) = (UO (0) - k) (US (0) + &) - UI’ (0) 

(3.1) 

u.(x)=~q&exp(il+) (s-0,1,2) 

The integral term in (1.4) is discarded and condition (1.3) is not taken into account in 
constructing the field po. Such a simplification is characteristic for all preceding work, 
and one of the problems of this investigation is to discuss its competence. 

The field q=(p-po)/(vF), associated with diffraction by the stiffener rib surface, satis- 
fies the condition on the plate 

Lq (GO) = 2 B,,6 (z - ml) + C,,S’ (z - nd) (3.2) 

the condition on the rib surface (-m < m(w) 

qx (m4 Y) + yqux (ma, 0) = g b) exp (ima) (0 < y < h) (3.3) 

g (Y) = $ z 2 exP (- w) (exp (- GO) + fl -I- iA& - -& fs 

and the homogeneous boundary-contact condition (1.4). For the future it is convenienttowrite 
the function g(g) in the form of an integral by using an analog of the Watson transformation 

= (G&v to) + f~c@) -I- fzy sh yd)dh -+$ fi 
(3.4) 

y=vm, S(h)=chyd-cosa, G(h, x,)=chy(~,-d)- 
e-'O ch y.r,, c(h) = eia - ch y d, 1 (h) = ih (A4 - k,,‘) + v 

Here the contour Ais centrally symmetric relative to h = 0, passes along the real axis 
for large h while remaining below the zeroes of the polynomial l(h) and the zeroes 
of the function S(a). 

h=--iy, 
Contours of this kind occur systematically in investigations on acous- 

tic diffraction by structures from intersecting plates /5,10/. 
The almost-periodic dependence of the field Q on the coordinate x permits /4/ reduction 

of the problem in a half-space to a problem in a half-strip {O(r<d, g >O}. In conformity 
with the representation (3.4), we will seek the field in the form (below the contour of inte- 
gration is A) 



with the Unknown functions u and V. The boundary condition on the plate results in the equa- 
tion 

to satisfy which it is sufficient to consider the functions u(a) and v(h) odd. 
Furthermore, from the continuity condition of the derivative q,(O,y) for all Y>O we 

have 

rqs (0, y)l= 9+ (+ 0, Y) - e-% (d - 0, Y) = S v && eiay da = 0 

Q @I = v 04 - e-is (u (h) sh yd + 2, (h) ch yd) 

To satisfy the last equation it is sufficient to set 

yQ (h) = E (A) S (h) CD+ (A); CD+ (a) E W+ (1 -t e,), ~1 > 0 (3.5) 

Here and henceforth W*(a) denote the classes of function analytic above (below) A with 
the asymptotic O(a-a) as h+cQ. The form of the asymptotic here follows from the Meixner 
condition /4/. 

From the oddness of n and v we find 

1 (h)@+(h) = --I (-a) Q+ (-a), aEd 

Taking account of the Liouville theorem, analytic continuation in the last relationship 
yields 

i(a)@+ (a) = ps (a) (3.6) 

with an arbitrary odd polynomial of third degree ps(h). 
Taking account of (3.61, we write the general solution of the functional equation f3.5) 

in the form 

u (a) = +L .9hyd+p(a)c(a), u(a)=+c(a)+p(a)shyd 

with the new Unknown odd function P (a) . Finally we arrive at the following representation 

where according to the Melxner condition 

p (a) = 0 (as+), a -+ 00 (3.7) 

Furthermore, the boundary conditions (1.3) and (1.4) assume no jump in the functions 

qsr (=, O), qys (2, 0) at s=O (continuity of the plate displacements and of the angles of turn- 
ing at the points of attachement to the ribs). We have 

[qr (0, O)] = - 2r s +$-da = 0 

[qv2 (0, O)] = - 2r s * da = 0 

Here and henceforth the symbol r denotes regularization. This latter 
extraction of the odd part of the integxand /lo/. It can be verified that 

s 
A.~."db 

r I(h)=-% s 
&da=0 

We then find ps(a) = iha,. from the second equation in (3.81, where 
constant. Furthermore, we have 

rqvIi (0, o)~ = - 2r S w da 

[qubrxz (0, O)] = - 2aer f w da = - 2nao 

(3.8) 

is achieved by 

a, is an arbitrary 

The boundary value problem for the diffraction field finally reduces to the following 
system of integral equations 

(3.9) 

s +#&dL=O (y>h) 
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(3.10) 

(3.11) 

Here 

The second equation in (3.9) describes the absence of a pressure jump over the ribs. 
The system (3.9), (3.10) should be solved in the class of odd functions p(h) with asymp- 

totic (3.7). 

4. The system of integral equations formulated above is successfully reduced to an in- 
finite algebraic system by using the method of factorization /4,5/. 

A particular solution of the first equation (3.9) can be found by using the representa- 
tion (3.4), the general solution contains arbitrary functions with prescribed analyticity pro- 
perties /5/ 

The solution of 

n (V P (A) -= 
1 w &5(L) + cp(- V + F+(h) + e-'mF-(h) @.=A) 

C(k)=-raoisinor+&G(h,rO)+-&-c(X)+&yshyd 

u=+ -B, F* (a) EW*(~~) 

the second integral equation (3.9) has the form /5/ 

P (a) = II, (a) (a E 4 

(4.1) 

(4.2) 

where $((h) is an odd entire function of order h. Using the oddness of the functionp(h) and 
the Liouville theorem,we find from (4.1) 

UP (a) z (-a) + z lay+ (a) + z (-h)eihhF- (-a) = N (a) (4.3) 

where N(h) = b. ih + bp (iA)’ is an arbitrary odd polynomial of third degree. 
Using the function p(h) from (4.1) and (4.2) and taking account of (4.3), we arrive at a 

boundary value problem of analytic function theory 

n(A)*(h) 
l(k) 

= &+)+s(P(-++$P(~))+ (4.4) 

9 + e-'uhp(&)_ ,$h* J.&Q-F-(-a) (hEhI 

The factorization needed later II(h) = II+(h)lI - (a), where II*(a) e W*(--'I,) is construct- 
ed in /4/, for instance. Using this partition, we convert the boundary value problem (4.4) 
to the form 

The left side of the last relationship belongs to the class ~('/,), while the right side 
has simple poles above h at the points h = iI',,r, =((nn)* - k*)“. (r&PO). By the generalized 
Liouville theorem 

F- (V --r, =n n-(b) - (4.6) 
,*I.-ir n 

with arbitrary constants c,. 
There remains to require 

sing it frcm (4.5) and (4.6), 
the points a = ir,. Equating 
for the constants cn (na 0) 

that the relation (4.5) define the entire function II,(h). Expres- 
we arrive at the necessity to eliminate the possible poles at 
corresponding residues to zero, we obtain a system of equations 
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(4.7) 

bp = exp (- 2lYJh) %I “n’% 

( 

1, 7221 
& e$r,(r,,+rp) ’ %I= 2, n=O 

n n = l7+ (irn) 
L n = - 2 (CJ, LR= 1 (- ir,), S, = 1 - cos a (- 1)” 

rnl=-sina Naomi)’ e~p(-r&) 
n n 

r,a = * exp (- r,h) n n 

(we omit the detail associated with evaluating the quantity 
f&, - nb$. 

cr; it turns out that c = nb,, fi = 

In addition to the unknowns c,, the quantities a,,, b,, b, enter into the system (4.7), 
and the contact conditions (3.10) must be involved in their determination. The integrals oc- 
curring here are evaluated by means of residues, where the identity 

r ih cp(-Ah) 
s ( 

-*r+l (h))dX=-2vS+$LdA. 

valid under the condition of the existence of the integral on the right, is used systematica- 
lly for regularization. Hence, the system of contact equations takes the form (summation over 

n > 0) 

s,,,lao + s,,,~ (bo - k%) + sm.&a + 2 %,A, = 0, (m = 1,2,3) 

q,d = _ y - 
I: 

&(i + (- 1)“cosa) 

slrd = 2ni sin a 
E -&-(-V 

(4.8) 

t 
s18d=2nisina n, %A t, = ($-)p r, + 2nvp, 

old=-isina Is 
r (--I)” n Tn(Zo) -fid 
%W, 2% 

s~~=s~~, szsd =- 2n 
rs 

+ 
nn 

old = 

.%.1= SlS, %a = %Sl sssd = - ndZ& - 

‘d+$&r ( 1 - exp (- r,h) - r,h exp (- r,h) - 

axd=- 
z 

&r&o). o,,p=~v 
‘nm 

- 

(m=1,2,3; ;;O) 
r*+rp 

Acceleration of the convergence of the series and products mentioned is achieved by ex- 
traction of the principal, slowly convergent part /ll/. 

5. To prove the equivalence of the infinite system (4.7), (4.8) and the initial boundary 
value problem, the function F-(A) and *P(k) should be introduced according to (4.5) and (4.6) 
and confirmed as belonging to the required classes of analytic functions, then p(h)is intro- 
duced according to (4.1) and satisfaction of the integral equations (3.9) and (3.10) is 



83.1 

confirmed. The equivalence of the latter to the initial boundary value problem is verified 
without difficulty, 

The system of equations (4.7)‘ (4.8) generates an equation of Uhe second kind in the 
space of sequences ip 

C + 4 (@ e = f, e = (~&a, bs,co,c,...) (5.11 

where the Hilbert-Schmidt operator A (.k)is an analytic operational function of the complex 
parameter k. From the uniqueness of the solution of the initial boundary value problem for 
bnk>o the discreteness and realness of the set of eigenfrequencies of the problem follows 
on the basis of the ana1Yti.c Fxedholm theorem /12/. 

Zr solution exists at non-resonance frequencies, is unique? and can be found bytbemetbod 
of reduction /l&f. We note also tbat the substitution c,= --msb,f c,'arp (--r,h) yields a system 
with exponential convergence forthenewunknowns c,' I where c, = 0 (n”“‘*) (n .+ M). 

6. WC+ turn to a study of the structure of the total field p(x, I/). Within the comb 
(o< I< & Q< y< h) it is representable in the form 

~(~,~~=~~~~Go~~~~-~ -+c~s ks) _t f6. If 

z: ~0s 9 Icon em (- r, (k - zr)) I- k, e=p (-- F&J 

Withaut presenting the expressions for the coefficients d,, Q, k,, we note just the 
asymptotic g,, =o(n-'~~) which can be utilized to verify satisfaction of the Meixner condi- 
tion by using the Euler-Maclauren summation formula. 

The field over the ribs (y>k) is a set of planar and quasiplanar waves 

The er@.i.tudes A,, are expressed in terms of the solution of the infinite system (4-T), 
(4.8). particularlyfor the fundamental wavespl = -4, exp (2 (ax/a! + by)) we have 

d&J===--VF ,__!%__ e-ibh 
wII+ (bf (6.3) 

The total number of waves being propagated over the ribs can be defined as the number of 
integers in the interval (-- (kd -+ ~)/{2~), (kd - ~~~(2~)). For 2n - kd > a > kd I there are gener- 
ally no waves being propagated (the sources are applied to the plate "much too often" and 
compensate each others' radiation to a certain degree), 

In the case a< kd( x only the fundamental wave pI is propagated. If the construction 
is excited cophasally here (a =O), then as an analysis of the infinite system shows, the 
amplitude Ad agrees with the value calculated by the zero-tb approximation, and thexafore, 
taking account of the solidity of the rib does not change the power radiated, 

We introduce the means in the period of the energy flux s transported in the vertical 
direction by the waves ~~~~~~ (the fundamental wave in the zero-tb approximation). We have 
successively 

=&l-U 

Here daa,Alo are amplitudes of the waves pee and &Q, respectively (see f3.1)). We alsO 

introduce the normalized flux (in HZ) 

$2 = iOfg(3@&~~= i~~(~~~a~~ 

The dependences of r,and T‘ D on the frequency f (in Es) are displayed in Fig.1 for lee=0 
fa) and za=O.Z%d (bf I and on the point of application of the force .za in Fig.2 f=&W Hz; all 
the dependence on r&i axe symmetric xelative to the axis &d=Q.$). The lines I and 2 corres- 
pond to the phase ar=Wkd,S and Pto a=Oskd, and dana 6 t0 CL== 0.9kd. The lines l,Sg 
here refer to the solid-free approximation (TO), and 2, 4, and 6 to the total field (T& 
Computations were performed for a steel plate of 4cm thickness, reinforced by steel ribs of 
thickness 3 cm, in water, d-60 cm, h==30 cm. 
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345 515 f 

Fig.1 

We note that the magnitude of the radiated energy 
is controlled by the interaction of two factors. On 
the one hand, attachement of the ribs to the plate and 
the fluctuating fluid mass result in an increase in 
system resistance, which specifies a diminution in the 
energy introduced. But on the other hand, re-reflec- 
tion of the waves by each rib is an additional radia- 
tion source since a redistribution of the total energy 
here occurs between the structure vibration energy and 
the energy emitted into the fluid. 

The radiated field undergoes sharp changesdepend- 
ing on the frequency and points of application of the 
force, changes in z,, can here result in replacement of 
the radiation maximums by the minimums, and conversely. 
A similar dependence of the radiated power on 20 was 
also noted in the case of a single rib /2/. The depend- 
ences of damped sinusoid type occurring there axe here, 
roughly speaking, combined for each "rib-force" pair 
to generate quite complex curves. 

2 

Q 

-2 

-4 

Fig.2 

We tuxn to a study of the characteristic frequencies at which sharp changes occur in the 
radiated field. The frequencies mentioned are independent of 00, they are determined solely 
by the Fredholm denominator of equation (5.11, in other words, the determinant oftheinfinite 
system of equations diminishes abruptly at these frequencies. Of interest is the dynamics of 
the frequencies on the parameters of the problem. As is known, an increase in the wavenumber 
x of the plate in the fluid as compared to a vacuum is due to the influence of the apparent 
mass of the fluid. The characteristic frequencies in the problem of the zero-th approximation 
are determined from the equations I2m-!-aj= xdb=O,&i, . ..I. only one SOlUtiOn f= 585 H,z for n = 

--i,a=0-9kd.t isintheratedband. Abumpisnotedaroundthis frequency in all curves 5. 
However, the mentioned frequency is the upper limit of the possible characteristic frequ- 

encies since the addition of ribs to the plate also produces an apparent mass #at increases 
the effective wave number of the structure x*. Consequently, the characteristic frequencies 
are roots of the equation2n-c= x-d and shift towards diminution, where the shift grows with 
the phase a, 

Taking account of the solidity of the ribs results in an increase in the apparent mass 
because of the fluid vibrating together with the ribs. This explains the leftward shift in 
frequency of the curves 2,4 and 6 relative to curves 1,s and 5. The conception of an ap- 
parent mass also explains the inverse dependence of the characteristic frequencies ontheratio 
9 of the rib mass to the mass of the plate span observed in the computations. 

The effect of the solidity also depends on the rib height, for hjdf 0.25 the solidity can- 
not be taken into account. Furthermore, this effect depends on the degree of phasing of the 
set, for a<O.lkd it too cannot be taken into account. Qualitatively this circumstance is 
explained by involving the direction of the wave vector n of the wave being propagated: a= 
(t. (1 - l")"'),f = 0.1,0.5,0.9. As the phase factor t grows, the propagation direction becomes moreand 
more shallow so that the ribs surfaces apparently are involved to a great extent in field form- 
ation, while the role of the solidity is less for small phases. 

Finally, we discuss the influence of the rib mass on the magnitude of the power emitted. 
Taking account of the solidity does not yield a correction greater than 2 dB for values of the 
parameter 9> 10 (very heavy ribs). If the force acts the rib (zO= 0), the radiation gainband 
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with respect to frequency is quite small since the heavy ribs swing weakly, retarding the 
radiation of the closely located forces. For 8>6 the frequency dependences already cease 
to be resonant in nature. Conversely, for small 6 the light ribs can swing strongly involv- 
ing the attached fluid in the vibrations, hence the role of the solidity increases. 

The author is grateful to D.P. Kouzov for constant attention to the research. 
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